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BasicsBasics  



Dataflow Graph Generation: Simple 

33  

What dataflow graph is generated? 
 
DFEVar x = io.input(“x”, type); 

DFEVar y; 

 

y = x + 1; 

 

io.output(“y”, y, type); 

x 

+ 

1 

y 



Dataflow Graph Generation: Simple 
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What dataflow graph is generated? 
 
DFEVar x = io.input(“x”, type); 

DFEVar y; 

 

y = x + x + x; 

 

io.output(“y”, y, type); 

x 

+ 

y 

+ 



• Compute both values and use a multiplexer. 

– x = control.mux(select, option0, option1, …, optionN) 

– x = select ? option1 : option0 
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Conditional Choice in Kernels 

 
DFEVar x = io.input(“x”, type); 

DFEVar y; 

 

y =  (x > 10) ? x + 1 : x – 1 

 

io.output(“y”, y, type); 

Ternary-if operator is 
overloaded 

x 

+ 

1 

y 

- 

1 

> 

10 



• Stream inputs/outputs process arrays 
– Read and write a new value each cycle 

– Off-chip data transfer required: O(N) 

• Counters can compute intermediate streams on-chip 
– New value every cycle 

– Off-chip data transfer required: None 

• Compile time constants can be combined with streams 
– Static value through the whole computation 

– Off-chip data transfer required: None 

• What about something that changes occasionally? 
– Don’t want to have to recompile  Scalar input 

– Off-chip data transfer required: O(1) 
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Scalar Inputs 



• Consider: 
 
 
 

• In fn2, we can change the value of C without recompiling, 
but it is constant for the whole loop 

• MaxCompiler equivalent: 
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Scalar Inputs 

fn1(int N, int *q, int *p) { 

 for (int i = 0; i < N; i++) 

  q[i] = p[i] + 4; 

} 

fn2(int N, int *q, int *p, int C) { 

 for (int i = 0; i < N; i++) 

  q[i] = p[i] + C; 

} 

VS. 

d 

+ 

q 

DFEVar p = io.input(“p”, dfeInt(32)); 

DFEVar C = io.scalarInput(“C”, dfeInt(32)); 

 

DFEVar q = p + C; 

 

io.output(“q”, q, dfeInt(32)); 

A scalar input can be changed 
once per stream, loaded into the 
chip before computation starts. 

C 

Written 
by host 



• An FPGA has a few MB of very fast block RAM 

• Can be used to explicitly store data on chip: 
– Lookup tables 

– Temporary Buffers 

• Mapped ROMs/RAMs can also be accessed by host 
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On-chip memories / tables 

d 

q 

DFEVar p = io.input(“p”, dfeInt(10)); 

 

DFEVar q = mem.romMapped(“table”, p,  

                        dfeInt(32), 1024); 

 

io.output(“q”, q, dfeInt(32)); 

Mapped 
ROM table 

Written 
by host 

for (i = 0; i < N; i++) { 

 q[i] = table[ p[i] ]; 

} 



• Stream offsets allow us to compute on values in a 
stream other than the current value. 

• Offsets are relative to the current position in a stream; 
not the start of the stream 

• Stream data will be buffered on-chip in order to be 
available when needed  uses BRAM 

– Maximum supported offset size depends on the amount of 
on-chip BRAM available. Typically 10s of thousands of points. 
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Stream Offsets 



Moving Average in MaxCompiler 
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Kernel Execution 
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Kernel Execution 
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Kernel Execution 

1313  



Kernel Execution 
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Kernel Execution 
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Kernel Execution 
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Boundary Cases 

1717  

What about the  
boundary cases? 



• To handle the boundary cases, we must explicitly 
code special cases at each boundary 
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More Complex Moving Average 
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Kernel Handling Boundary Cases 



The Stream Loop 

2020  

DFEVar A = io.input(”input” , dfeUInt(32)); 

DFEVar B = A + 1; 

io.output(”output” , B , dfeUInt(32)); 

A A 

 + 

1 

B B 

uint A[...];  

uint B[...]; 

for (int count=0; ; count += 1) 

   B[count] = A[count] + 1; 



Adding a Loop Counter 
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DFEVar A = io.input(”input” , dfeUInt(32)); 

DFEVar count = control.count.simpleCounter(32); 

DFEVar B = A + count; 

io.output(”output” , B , dfeUInt(32)); 

A A 

 + 

count count 

B B 

for (int count=0; ; count += 1) 

   B[count] = A[count] + count; 



int count = 0; 

for (int i=0; i<N; ++i) { 

 for (int j=0; j<M; ++j) { 

  B[count] = A[count]+(i*M)+j; 

      count += 1; 

   } 

} 

 

Loop Nest without Dependence 
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DFEVar A = io.input(”input” , dfeUInt(32)); 

CounterChain chain = control.count.makeCounterChain(); 

DFEVar i = chain.addCounter(N, 1).cast(dfeUInt(32)); 

DFEVar j = chain.addCounter(M, 1).cast(dfeUInt(32)); 

DFEVar B = A + i*100 + j; 

io.output(”output” , B , dfeUInt(32)); 

A A 

 + 

B B 

j 100 100 i 

 + 

 * 

 

Use a chain 
of counters 

to generate i 
and j 



for (i = 0; ; i += 1)  { 

   float d = input[i]; 

   float v = 2.91 – 2.0*d; 

   for (iter=0; iter < 4; iter += 1)  

     v = v * (2.0 - d * v); 

   output[i] = v; 

} 

 

Loop Unrolling with Dependence 
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DFEVar d = io.input(”d”, dfeFloat(8, 24)); 
DFEVar TWO = constant.var(dfeFloat(8,24), 2.0); 
DFEVar v = constant.var(dfeFloat(8,24), 2.91) − TWO*d; 
 
for ( int iteration = 0; iteration < 4; iteration += 1) { 
 v = v*(TWO− d*v); 
} 
io.output(”output” , v, dfeFloat(8, 24)); 



for (i = 0; ; i += 1)  { 

   float d = input[count]; 

   float v = 2.91 – 2.0*d; 

   for (iter=0; iter < 4; iter += 1)  

     v = v * (2.0 - d * v); 

   output[i] = v; 

} 

 

Loop Unrolling with Dependence 
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DFEVar d = io.input(”d”, dfeFloat(8, 24)); 
DFEVar TWO= constant.var(dfeFloat(8,24), 2.0); 
DFEVar v = constant.var(dfeFloat(8,24), 2.91) − TWO*d; 
 
for ( int iteration = 0; iteration < 4; iteration += 1) { 
 v = v*TWO− d*v; 
} 
io.output(”output” , v, dfeFloat(8, 24)); 

• The software loop has a cyclic dependence (v) 
• But the unrolled datapath is acyclic 
 



Exercise: Chapter 4 Exercise 1  
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DFEVar x = io.input(“x”, type); 

DFEVar y; 

 

y = x * x + x; 

 

io.output(“y”, y, type); 

• Build Simulation 
• Look at kernel Graph before & after 
• Run 

DFEVar x = io.input(“x”, type); 

DFEVar y; 

 

DFEVar square = x * x; 

square.simWatch(“square”); 

 

y = square + x; 

y.simWatch(“y”); 

 

io.output(“y”, y, type); 

• Modify source to add simWatch() 
• Run 
• Check watchpoint table 



Dataflow ProgrammingDataflow Programming  

Numeric TypesNumeric Types  



• DFEVars have a size in bits 

– CPU restricted to char, int, long, float, double (etc) 

– DFE is much more flexible 
• 7 bit integer 

• Float 16 bit mantissa, 8 bit exponent 

• Choose type to represent number in DFEVar 

– With appropriate accuracy. 

– With appropriate dynamic range. 

• More bits == More FPGA area used   
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Number Representation 



• MaxCompiler has in-built support for floating point 
and fixed point/integer arithmetic 

– Depends on the type of the DFEVar 

• Can type inputs, outputs and constants 

• Or can cast DFEVars from one type to another 

• Types are Java objects, just like DFEVars,  
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Number Representation for DFEs 

// Create an input of type t 

DFEVar io.input(String name, DFEType t);  

 

// Create an DFEVar of type t with constant value 

DFEVar constant.var(DFEType t, double value); 

 

// Cast DFEVar y to type t 

DFEVar x = y.cast(DFEType t); 



• Floating point numbers with base 2, flexible 
exponent and mantissa 

• Compatible with IEEE floating point  
except does not support denormal numbers 

– When Computing in Space you can use a larger exponent 

 

• Examples: 
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DFE Floating Point - dfeFloat 

DFEType t = dfeFloat(int exponent_bits, int mantissa_bits); 

Exponent bits Mantissa bits 

IEEE single precision 8 24 

IEEE double precision 11 53 

DFE optimized low precision 7 17 

Including the sign bit 

Why dfeFloat(7,17)…? 



• Fixed point numbers 

• Flexible integer and fraction bits 

• Flexible sign mode 

– SignMode.UNSIGNED or SignMode.TWOSCOMPLEMENT 

 

• Common cases have useful aliases 

3030  

DFE Fixed Point – dfeFixOffset 

DFEType t = dfeFixOffset(int num_bits, int offset, SignMode sm); 

Integer bits Fraction bits Sign mode 

dfeInt(N) N 0 TWOSCOMPLEMENT 

dfeUInt(N) N 0 UNSIGNED 

dfeBool() 1 0 UNSIGNED 



• Can mix different types in a MaxCompiler kernel to 
use the most appropriate type for each operation 

– Type conversions costs area – must cast manually 

• Types can be parameter to a kernel program 

– Can generate the same kernel with different types 
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Mixed Types 

class MyKernel extends Kernel { 

 public MyKernel(KernelParameters k, DFEType t_in, DFEType t_out) 

{ 

  super(k); 

   

  DFEVar p = io.input(“p”, dfeFloat(8,24));  

  DFEVar q = io.input(“q”, t_in); 

 

  DFEVar r = p * p; 

 

  DFEVar s = r + q.cast(r.getType()); 

  io.output(“s”, s.cast(t_out), t_out); 

 } 

} 



• When we remove bits from the RHS of a number we may 
want to perform rounding.  
– Casting / type conversion 
– Inside arithmetic operations 

• Different possibilities 
– TRUNCATE: throw away unwanted bits 
– TONEAR: if >=0.5, round up (add 1) 
– TONEAREVEN: if >0.5 round up, if <0.5 round down, if =0.5 then 

round to the nearest even number 

• Lots of less common alternatives: 
– Towards zero, towards positive infinity, towards negative infinity, 

random….  

• Very important in iterative calculations – may affect 
convergence behaviour 
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Rounding 



• Floating point arithmetic uses TONEAREVEN 

• Fixed point rounding is flexible,  
controlled by the RoundingMode 

– TRUNCATE, TONEAR and TONEAREVEN are in-built 
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Rounding in MaxCompiler 

DFEVar z; 

... 

optimization.pushRoundingMode(RoundingMode.TRUNCATE); 

 

z = z.cast(smaller_type); 

 

optimization.popRoundingMode(); 



DataflowDataflow  ComputingComputing  

OptimisationOptimisation  



• Goals of optimisations: 

 

– Fit more compute on DFE 

– Increase frequency of kernels 

–Reduce expensive data movements (e.g. 
back and forth between CPU and DRAM) 

 

Optimisation – Introduction 
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• The four dimensions of Optimisation: 

– Bandwidth 
How much data can you afford to move between DFE/CPU/DRAM? 

– Area 
Resource usage as reported in your _build.log. This tells you which percentage of the chip will 
be doing compute every tick. 

– Utilisation 
Actual compute. This is not reported by the tools and can vary during run time. This tells you 
which proportion of compute is useful compute (e.g. muxes will ‘throw away’ data). 

– Frequency 
Higher frequency means higher throughput. 

Optimisation – Introduction 
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• These four dimensions affect each other, e.g: 

– Increasing utilisation makes it harder to build at 
high frequency 

– Increasing frequency brings your bandwidth 
utilisation closer to their limit since you consume 
data at a faster rate 

– Higher Utilisation means more data is required to 
feed the compute unit 

Optimisation – Introduction 
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• Most important to always remember is: 

 

In a DFE, computation is 
done in space, not in 

time! 
 

 

Optimisation – Introduction 

3838  



• Consider the CPU code 

 
if ( cond ) 

    y = exp(x*a); 

else 

    y = exp(x*b); 

 

Optimisation – Example 
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• Consider the CPU code 
If( cond ) 

    y = exp(x*a) 

else 

    y = exp(x*b) 

• Hw Implementation 1 

• But… 
 

 

Optimisation – Example 

x 

b a 

* * 

exp exp 

cond 

mux 

y 
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• Consider the CPU code 
If( cond ) 

    y = exp(x*a) 

else 

    y = exp(x*b) 

• Hw Implementation 1 

• But… 
 

 

Optimisation – Example 

x 

b a 

* * 

exp exp 

cond 

mux 

y 

Exponentials are 
expensive! 

4141  



• Consider the CPU code 
If( cond ) 

    y = exp(x*a) 

else 

    y = exp(x*b) 

• Hw Implementation 2 

• But… 

 

Optimisation – Example 

x 

b a 

* * 

exp 

cond 

mux 

y 
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• Consider the CPU code 
If( cond ) 

    y = exp(x*a) 

else 

    y = exp(x*b) 

• Hw Implementation 2 

• But… 

 

Optimisation – Example 

x 

b a 

* * 

exp 

cond 

mux 

y 

There still are two 
multiplications when 
only one result will be 
used 
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• Consider the CPU code 
If( cond ) 

    y = exp(x*a) 

else 

    y = exp(x*b) 

• Hw Implementation 3 

• Now the implementation is optimal 

 

Optimisation – Example 

x 

b a 

* 

exp 

cond 

mux 

y 

4444  



DataflowDataflow  ComputingComputing  

Case StudyCase Study  



 

• Very large N (~90,000 particles) 

• Brute force approach 

• Look at options, find optimal architecture 

Porting N-Body to DFEs 



• Small code base 
    for (int t = 0; t < T; t++) { 
        memset(a, 0, N * sizeof(coord3d_t)); 
        for (int q = 0; q < N; q++) { 
            for (int j = 0; j < N; j++) { 
                    float rx = p[j].p.x - p[q].p.x; 
                    float ry = p[j].p.y - p[q].p.y; 
                    float rz = p[j].p.z - p[q].p.z; 
                    float dd = rx*rx + ry*ry + rz*rz + EPS; 
                    float d = 1/ sqrtf(dd * dd * dd); 
                    float s = m[j] * d; 
                    a[q].x += rx * s; 
                    a[q].y += ry * s; 
                    a[q].z += rz * s; 
            } 
        } 
        for (int i = 0; i < N; i++) { 
            p[i].p.x += p[i].v.x; 
            p[i].p.y += p[i].v.y; 
            p[i].p.z += p[i].v.z; 
            p[i].v.x += a[i].x; 
            p[i].v.y += a[i].y; 
            p[i].v.z += a[i].z; 
        } 
    } 
 

• Very long running time: ~85 seconds per timestep, 
for 90,000 particles. 

 

Problem to port to DFE 



DFE Porting Process 

Analysis 
Architecture 

Implementation 



• Step 1: Analyse Code 

– Profile code, measure time taken 

– Measure memory requirements and working set size 

– Understand numerical requirements 

• Step 2: Architect Solution 

– Evaluate and model partitioning options 

– Estimate speedup 

• Step 3: Implementation 

– Transform code into partitioned architecture 

– Implement C models 

– Compile DFE (.max file) 

– Optimise and Achieve Speedup 

 

DFE Porting Process Overview 



Aim: Have a complete map of all computation and 
dataflow, and timings for each block of 
computation. 

 

• Find out where the computation is happening 
(Oprofile can help) and where the data is going 

• Identify major loops / draw loop graph 

• Measure time spent inside major loops 

 

Analysis:  Step 1 – Dynamic Analysis 



Analysis:  Step 1 – Dynamic Analysis 

Loop over time step 

Loop over N particles 

Loop over N particles 
Update velocities and positions 

Loop over N particles 
Compute forces and accelerations 



Analysis:  Step 1 – Dynamic Analysis 

Loop over time step 

Loop over N particles 

Loop over N particles 
Update velocities and positions 

Loop over N particles 
Compute forces and accelerations O(N2) 

O(N) 



Aim: Understand amount of data being moved around and 
amount of compute to perform on it 

 

• Analyse the data flow between the critical loops. 
– Examine  what data structures are being created. 

– Identify which loops  are going to work with very large arrays. 

• Analyse computation inside the critical loops. 
– Count the number of floating point operations per data point 

– Analyse loop dependencies 

• Understand the mathematical algorithms being used. 
– Relationship between input and runtime, memory use. 

– Understand precision requirements of each part of the 
algorithm 
 

 

Analysis: Step 2 – Static Analysis 



Analysis: Step 2 – Static Analysis 

Loop over time step 

Loop over N particles 

Loop over N particles 
Update velocities and positions 
Uses array of size O(N) 

Loop over N particles 
Compute forces and accelerations 
Uses array of size O(N) 

O(N2) 

O(N) 



Analysis: Step 2 – Static Analysis 

Loop over time step 

Loop over N particles 

Loop over N particles 
Update velocities and positions 
Use array of size O(N) 

Loop over N particles 
Compute forces and accelerations 
Use array of size O(N) 

O(N2) 

O(N) 

Update 
Forces 

Update 
Position & velocities 



Analysis: Step 2 – Static Analysis 

Loop over time step 

Loop over N particles 

Loop over N particles 
Update velocities and positions 
Use array of size O(N) 
~6 FP Operations 

Loop over N particles 
Compute forces and accelerations 
Use array of size O(N) 
~20 FP Operations 

O(N2) 

O(N) 



Aim: Consider various architecture choices and 
understand the pros and cons of each choice 

 

• Examine volume of data flowing through algorithm. 

– How large is the working set, i.e. does it need to be stored in 
LMEM or FMEM? 

– Is data access pattern known statically  
or calculated dynamically? 

– How much computation would be done  
with each loaded data value? 

– Consider the ratio of Computation to Communication! 
 

Analysis: Step 3 – Data Access plan 



 

• Examine volume of data flowing through algorithm. 
 

– How large is the working set,  
i.e. does it need to be stored in LMEM or FMEM? 

 

On a MAX3 card, you have  around 4.5MB of available ultra 
fast access (>10TB/s) of storage in FMEM*. If you need 
more than that, then you will have to use LMEM which 
offers 12GB, 24GB, 48GB or 96GB of storage per DFE. 

 

 

Analysis: Step 3 – Architecture Options 

* Some of this FMEM will be used by MaxCompiler for automatic buffering 
   (for example for scheduling, or in FIFOs between Kernels). How much,  
   varies widely from one design to another. 



Analysis: Step 3 – DFE Architecture Options 

Loop over time step 

Loop over N particles 
 
 
 
 
 
 
 
Update 3 floats/particle -> up to 1MB 

Loop over N particles 
Update velocities and positions 
Use array of size O(N) 
Read 3 floats/particle -> up to 1MB 
Update 6 floats/particle -> up to 2.1MB 
~6 FP Operations 

Loop over N particles 
Compute forces and accelerations 
Use array of size O(N) 
Read 4 floats/particle -> up to 1.4MB 
~20 FP Operations 

O(N2) 

O(N) 



 

• Examine volume of data flowing through algorithm. 

 

– Is data access pattern known statically? 
If the pattern is static then you can either use one of the 
command generators provided (LINEAR1D, ...) or generate 
commands on the CPU and stream them in.  

– Is data access pattern computed dynamically? 
If the address of the data you need to read or write needs 
to be computed on the Dataflow Engine, then your access 
pattern is dynamic and you will have to generate the 
LMEM command inside a Kernel. 

 

 

Analysis: Step 3 – DFE Architecture Options 



• For N-Body problem, access pattern is static 
and linear 1D 

for (int q = 0; q < N; q++) { 

    for (int j = 0; j < N; j++) { 

        ... 

    } 

} 

 
 

 

Analysis: Step 3 – DFE Architecture Options 

q=0 
j=0 



Analysis: Step 3 – DFE Architecture Options 

q=0 
 

 
j=1 

• For N-Body problem, access pattern is static 
and linear 1D 

for (int q = 0; q < N; q++) { 

    for (int j = 0; j < N; j++) { 

        ... 

    } 

} 

 
 

 



Analysis: Step 3 – Architecture Options 

q=0 
 

 
j=2 

• For N-Body problem, access pattern is static 
and linear 1D 

for (int q = 0; q < N; q++) { 

    for (int j = 0; j < N; j++) { 

        ... 

    } 

} 

 
 

 



Analysis: Step 3 – Architecture Options 

q=0 
 

 
j=N-1 

• For N-Body problem, access pattern is static 
and linear 1D 

for (int q = 0; q < N; q++) { 

    for (int j = 0; j < N; j++) { 

        ... 

    } 

} 

 
 

 



Analysis: Step 3 – Architecture Options 

 
j=0 

 

q=1 

• For N-Body problem, access pattern is static 
and linear 1D 

for (int q = 0; q < N; q++) { 

    for (int j = 0; j < N; j++) { 

        ... 

    } 

} 

 
 

 



Analysis: Step 3 – Architecture Options 

 
 

q=1 
j=1 

• For N-Body problem, access pattern is static 
and linear 1D 

for (int q = 0; q < N; q++) { 

    for (int j = 0; j < N; j++) { 

        ... 

    } 

} 

 
 

 



 

• Examine volume of data flowing through algorithm. 

 

– How much computation would be done  
with each loaded data value? 

 

By carefully choosing your memory access pattern, you can 
increase data reuse and decrease memory bandwidth 
requirement. LMEM has a limit which depends on the platform 
and its frequency. For some DFE at 350MHz  
this is about  33.5 GB/s.  
 
With complex access patterns and many streams, actual 
bandwidth could be different. 

 

Analysis: Step 3 – Architecture Options 



• What needs to be on the DFE,  
and what can stay on the CPU? 
– How many functions require access to the largest arrays? 

– Do the functions that use the large arrays also have long runtime? 

 Moving the bulk of the compute to the DFE might not be the right answer. 

 

 

Analysis: Step 3 – Architecture Options 

CPU 

DFE  

Function1 – 5s 

Function2 – 1s 

CPU 

Function1 – 1000s 

Function2 – 1s 

10G data 
transferred Transfer 5s 

CPU 

DFE  

Function1 – 5s 

Function2 – 1s 

Final result only 

CPU time 1001s Option 1 time 11s Option 2 time 6s 



• Examine what data can be pre-computed. 
– Which functions actually need to be run inside the loops? 

   Consider the following loops: 
for i = 0..99 do 

    double a = cos(i*2*PI/100) 

    for j = 0..9999 

        // do some compute 

 

Assume that we wish to put these loops onto a DFE and that 
each iteration of j takes one cycle. Putting the computation 
of a onto the DFE as well means that we will be using 
hardware resources to compute a cosine that is needed only 
once every 10,000 cycles. This is very wasteful. Instead, it 
would be better to compute the 100 different values of a 
and store them into an FMEM on the DFE. 

 

Analysis: Step 3 – Architecture Options 



 

NOTE: There is a high overhead(*) to create a new kernel (each running in 
their own clock domain), so keep the number of kernels low. 

 

• Your design can have one or more kernels. How do you decide how 
many kernels to build: 

 

1. Your design may have multiple passes. Each pass could have a separate 
kernel. 

 

2. You may be able to partition your design into pieces with dynamic 
and/or different input and output bandwidth requirements 

 

 
(*) A Maxeler architecture is a Globally Asynchronous Locally Synchronous (GALS)  
architecture 

Analysis: Step 3 – Multiple Kernels 



• NBody Option 1 

           DFE 

Send positions and 
accelerations 

Analysis: Step 3 – Architecture Options 

LMEM 
 

Position, 
mass, 

velocities 

Kernel 1 
 

Compute forces and 
accelerations 

Kernel 2 
 

Update positions and 
velocities 

CPU 

Write masses, initial 
positions and velocities 
only once 

Send 
updated 
positions 

Read 
positions
, masses 

Read 
velocities 

Write new 
positions & 
velocities 



• NBody Option 2 

           DFE 

Send  
accel- 
erations 

Analysis: Step 3 – Architecture Options 

LMEM 
 

Position, 
mass 

Kernel 1 
 

Compute forces and 
accelerations 

CPU 

Write masses and positions. 
Do this each time step 

Read 
positions 
and 
masses 



• NBody Option 3 

DFE 

Analysis: Step 3 – Architecture Options 

Kernel 1 
 

Compute forces 
and 

accelerations CPU 

  Write  
masses & positions.  
   <Only once> 

FMEM 
 

Position, 
mass 

Send positions and accelerations 

Kernel 2 
Update positions 

and 
velocities Send updated 

positions 

FMEM 
Velocity 

Write velocities.  
  Only once. 

Send updated positions 



• NBody Option 4 

DFE 

Send 
accelerations 

Analysis: Step 3 – Architecture Options 

Kernel 1 
 

Compute forces 
and 

accelerations 

CPU 

Write masses 
and positions 
each time step 

FMEM 
 

Position, 
mass 



• Look at Options 

• Process: Analysis, Architecture, Implementation 

• Carefully minimise the number of kernels needed. 

• First move data from CPU to DFE and then consider 
which computations need to move with the data 

 

 

Conclusions – Porting CPU Software to DFEs 


