Introduction to
Dataflow Computing

MAXEKER

Technologies
MAXIMUM PERFORMANCE COMPUTING

Code Carpentry Workshop
Peter Sanders, July 2015

Dataflow Programming
Basics

MAXEKER

Technologies
MAXIMUM PERFORMANCE COMPUTING

Dataflow Graph Generation: Simple

What dataflow graph is generated?

DFEVar x= ioinput (Ax0, type),;
DFEVar v,

y=X+1;

jooutput (Ayo, y, type);

Dataflow Graph Generation: Simple

What dataflow graph is generated?

DFEVar x= ioinput (Ax0, type),;
DFEVar v,

y=X+X+X;

jooutput (Ayo, y, type);

Conditional Choice in Kernels

A Compute both values and useraultiplexer.
iE I O2YyUNRf ®YdzE O & SophodN) = 2 L.
i x = select ? option1 : option- Ternaryif operator is

overloaded

DFEVar x= ioinput (fixo, type);
DFEVar v; 0 . :
y=(x>10)?x+1:X 1 l

iooutput (fiyo, vy, type); \’\ /

Scalar Inputs

A Stream inputs/outputs process arrays
I Read and write a new value each cycle
I Off-chip data transfer requiredD(N)

A Counters can compute intermediate streams-artip
I New value every cycle
I Off-chip data transfer required: None

A Compile time constants can be combined with strean
| Static value through the whole computation
I Off-chip data transfer required: None

A What about something that changes occasionally?
i52y Q0 41 yid (2 AKScaabinpiatz NI O2
I Off-chipdata transferequired: O(1)

Scalar Inputs

A Consider:

fnl(int N, int *q, int *p){ fn2(int N, int *g, int *p, int C){
for(int i =0; 1 <N; i++) yg for(int i =0; 1 <N; i++)

\ aiil=pl 1]+4 \ qiil=p[1]+C

A In fn2, we can change the value of C without recompiling
but it is constant for the whole loop

A MaxCompilerequivalent:

DFEVar p= io.input (A p odfeint (32)); Zﬁ”ﬁfﬁt

DFEVar C = io.scalarlnput (A Codfelnt (32)); C

DFEVar q=p + C;

jo.output (Aqo, dieint (32);

A scalar input can be changed
once per stream, loaded into the
chip before computation starts.

On-chip memories / tables

A An FPGA has a few MB of very fast block RAM

A Can be used to explicitly store data on chip:

I Lookup tables
I Temporary Buffers

A MappedROMSs/RAMSs can also be accessed by host

for(i =0; i <N; i++){
qf 1] = table[p[i]];

¥

DFEVar p= io.nput (@i p odfelnt (10));

Written
by host

DFEVar g= mem.romMapped(it abl eo, p,
dfeint (32), 1024);

digint (32));

(fAiqo,

j0.output

Stream Offsets

A Stream offsetsllow us to compute on values in a
stream other than the current value.

A Offsets are relative to theurrentpositionin a stream;
not the start of the stream

A Stream data will be buffered echip in order to be
available when needed uses BRAM

I Maximum supported offset size depends on the amount of
on-chip BRAM available. Typically 10s of thousands of poir

Moving Average in MaxCompiler

14 class MovingAverageSimpleKernel extends Kernel {
15

16 MovingAverageSimpleKernel(KernelParameters parameters) { 1
17 super(parameters);

18

19 DFEVar x = io.input("x", dfeFloat(B, 24));]

20

21 DFEVar prev = stream.offset(x, —1);

22 DFEVar next = stream.offset(x, 1);

23 DFEVar sum = prev + X + next; \

24 DFEVar result = sum / 3; /

25 3
26 io.output("y”, result, dfeFloat(8, 24)),

27 }

28}

Kernel Execution

v
ik
|
O
i

Kernel Execution

goq L
-

A%A?_wﬁﬂ |

Kernel Execution

ity
O

el
i
:

Kernel Execution

5L
a el

mﬁgﬁm?oﬁ}m
] N

Kernel Execution

I
ik
P
:

()—

Kernel Execution

-0
(+ o B—< e
Ral

. <_E><-.o ?.o ?m
B o

Boundary Cases

<o

@.
m®_m
_®.

-E>- .\, ﬁ.} QD?. -0

What about the

boundary case?\\

112134

More Complex Moving Average

A To handle the boundary cases, we must explicitly
code special cases at each boundary

& (X +X,)/2 if i=0
(L +x)/2 dfi=N-1
|1(Xi-1+ X +X,,)/3 otherwise

Kernel Handling Boundary Cases

14 elass MovingAweragekemel extends Kernel |

15

16 MovingAweragekermnsl(KernelParameters parameters) | : il
17 superparameters); i :: |
15 d cnt I ol
19 # Inperd e |
20 DFEVar x = io.inputi"x”*, dfeFloat{s, 24)); il — I +
21 7 1
22 DFEVar size = ioscalarinput“size”, dielint(32)): l o ||| m | I*
23 .'I. .-"'--

24 4 Data Ifl I/J- :
25 DFEVar pravQriginal = stream,offset(x, —1); ot - B N

28 DF EVas rlcrq.ll'.'.:-'i!_:]irl.'ll = slream. ollsel|x. 1] P i
27 / - i
28 A Comitrod ; 1
29 DF EVar cownt = control count.simpleCounterid2, size) o T t
an . .-"". I_'.
a1 DFEVar abovel owerBound = caunt = 0 d .-"-_H‘-.] 1
3z DFEvar belowUpperBound = sount < size — 1; e & Jo !
a3 o e !
34 DFEVar withinBounds = abovelowerBound & belowUpperBound, " - :
i -

& DFEVar prev = abovelowerBownd 7 prevOriginal ; O; T . :
a7 DFEVar next = belowlpperBound 7 nextOriginal @ 03 T
a8 P
o] DFEVar divisor = withinBounds 7 constantvar|dfeFloat(s, 24), 3) &~) I

40 !

41 DFEVar sum = prev + x + nexi; " T
42 DFEVar result = sum [divisor ; —— :
43 |

44 io.outpul("y", result, disFloal{gd, 24)) 1
45) contral

4%)

The Stream Loop

uint A[..]; ——

uint BJ...]; | |

for(int count=0; ; count +=1) ‘
B[count] = A[count] + 1; A 4

DFE/arA =io.inputd ¢ A y Ofelding€32))x
DFEvVarB = A + 1;
jo.outputo ¢ 2 dzi LMdEUKY32); . =

Adding a Loop Counter

for (int count=0; ; count +=1) .
B[count] = A[count] + count; w

DFEVaA =io.inputd ¢ A y Hieldin€32))x

DFEVacount =control.count.simpleCountéB2);
DFEVaB = A + count;
jo.outputd € 2 dzil LdEUN32); . =

Loop Nest without Dependence

SEsEEEEEEEmEn. y

int count = 0; y
for(int 1=0; i<N;++ i){
for(int j=0;j<M; ++)) {
B[count] = A[count]+(| *M)+j;
count +=1;

DFEVaA =io.inputd ¢ A Y didizing32)k;

CounterChairchain =control.count.makeCounterChai,

Use achain
DFEVar =chain.addCountefN, 1).castdfeUInt(32)); of counters

to generatel
and j

DFEVaj =chain.addCountefM, 1).cast@ifeUInt(32));

DFEVaB = A 4*100 + j;

Loop Unrolling with Dependence

for(i =0;; i +=1){ -

float d = input| |]; S N

float v=12.91 i 2.0%d; * ~—¢
for(iter =0; iter <4; iter +=1) “
* °

v=v* (2.0 - d*v);
OUtpUt[|] =V, iteration 1

DFEVad =io.inputdé ¢ RféFibal8, 24)); teration 2
DFEVafWO = constant.vat{eFloa(8,24), 2.0);
DFEVav = constantvadfeFloab y SHNn 0 2 H ®PPMO 'k

for (int iteration = 0; iteration < 4; iteration += 1) { fterations

O I' Opd6¢2hb RfFOOT *)‘_'
! ' il

jo.outputo ¢ 2 dzil Lditlaat8,24))g >

Loop Unrolling with Dependence

for(1 =0;; I +=1) {
float d = input[count];
floatv = 2.91 I 2.0*d,;
for (g@\ =0; iter <4; iter +=1)

- \/?2 .0 - d*v); -
Output[=V, iteration 1
}

DFEVad =io.inputo ¢ BféFoaf(8, 24)); |
DFEVail WO= constant.vadfeFloa(8,24), 2.0); S . |
DFEVav = constantvadfeFloab y SH N 0 2 H ®dpm 5B A=

for (int iteration = O; iteration < 4; iteration += 1) {

3 I' Or¢2hb RFQOT -
})) Cteraions . 1 — | [
j0.outputd ¢ 2 dz(i LdéElcals,24))0 =

A.

Exercise: Chapter 4 Exercise 1

DFEVar x= oinput (fAxo0, type);

DREVar y; A Build Simulation

y=X*X+X A Look at kernel Graph before & aft
A Run

iooutput (Ayo, y, type)

DFEVar x= io.input (fixo, tyljpe):;

DFEVar v; _ _
A Modify source to adgimWatch)
DFEVar square = X * X; A RuUN

square.simWatch (Aisquar eo) ; _
A Checlwatchpointtable

y = square + X;
y.simWatch (Ay 0) ;

Dataflow Programming
Numeric Types

_\\

MAXERER

Technologies
MAXIMUM PERFORMANCE COMPUTING

Number Representation

A DFEVarbave a size in bits
I CPU restricted to chant, long, float, doubled{tc)

I DFE i1s much more flexible
A 7 bit integer
A Float 16 bit mantissa, 8 bit exponent

A Choose type to represent number DFEVar
I With appropriate accuracy.
I With appropriate dynamic range.

A More bits == More FPGA area used

Number Representation for DFES

A MaxCompilehas irbuilt support for floating point
and fixed point/integer arithmetic

I Depends on théype of the DFEVar
A Can type inputs, outputs and constants
A Or cancastDFEVarfrom one type to another
A Types are Java objects, just IREEVars

/I Create an input of type t
DFEVar io.input (String name, DFEType t);
I/ Create an DFEVar oftype t with constant value

DFEVar constant.var(DFEType t, double value);

Il Cast DFEVar y totype t
DFEVar x= y.cast (DFEType t);

DFE Floating Point - dfeFloat

A Floating point numbers with base 2, flexible
exponent and mantissa

A Compatible with IEEE floating point
exceptdoes not supportdenormalnumbers
I When Computing in Space you can use a larger exponent

DFEType t= dfeFloat (int exponent_bits , int mantissa_bits);

x

A Examples:

_ Exponent bits Mantissa bits

IEEE single precision 8 24
IEEE double precision 11 53
DFEoptimized low precision 7 17

DFE Fixed PointT dfeFixOffset

A Fixed point numbers
A Flexible integer and fraction bits

A Flexible sign mode
i SignMode.UNSIGNBDSignMode TWOSCOMPLEMENT

DFEType t= dfeFixOffset (int num_bits , int offset, SignMode sm);

A Common cases have useful aliases

dfelnt(N) 0 TWOSCOMPLEME
dfeUIn(N) N 0 UNSIGNEI
dfeBool) 1 0 UNSIGNEI

Mixed Types

A Can mix different types inaxCompilekernel to
use the most appropriate type for each operation
I Type conversions costs areanust cast manually

A Types can be parameter to a kernel program
I Can generate the same kernel with different types

class MyKernel extends Kernel {

public MyKernel (KernelParameters k, DFEType t in , DFElype t out)

{
super(Kk);

DFEVar p = io.input
DFEVar g = io.input

@)

odfeFloat (8,24));
ot,in);

O ©
@)

DFEVar r=p*p;

DFEVar s=r+ g. cast (r.getType ());

Rounding

A When we remove bits from the RHS of a number we may
want to performrounding

I Casting / type conversion
I Inside arithmetic operations

A Different possibilities
I TRUNCATE: throw away unwanted bits
I TONEAR: if >=0.5, round up (add 1)

I TONEAREVEN: if >0.5 round up, if <0.5 round down, if =0.5 the
round to the nearest even number

A Lots of less common alternatives:

I Towards zero, towards positive infinity, towards negative infinity,
N} YR2Y X @

A Very important in iterative calculationsmay affect
convergence behaviour

Rounding in MaxCompiler

A Floating point arithmetic uses TONEAREVEN

A Fixed point rounding is flexible,
controlled by theRoundingMode
i TRUNCATE, TONEAR and TONEAREVENite in

DFEVar z;

optimization.pushRoundingMode (RoundingMode. TRUNCATE);

z= z.cast (smaller type);

optimization.popRoundingMode 0;

Dataflow Computing
Optimisation

MAXERER

Technologies
MMMMMMMMMMMMMMMMMMMMMMMMMMM

Optimisation T Introduction

A Goalsof optimisations:

I Fit more compute on DFE
I Increase frequency of kernels

I Reduce expensive data moveme(gsg.
back and forth between CPU abiRAM)

Optimisation T Introduction

A The four dimensions of Optimisation:
I Bandwidth

How much data can you afford to move between DFE/CPU/DRAM?
I Area

Resource usage as reported in your _build.log. This tells you which percentage of the chip w
be doing compute every tick.

I Utilisation
Actual compute. This is not reported by the tools and can vary during run time. This tells you
which proportion of compute is useful compute (emuxesg A f £ WIGKNR G | g1 &
I Frequency

Higher frequency means higher throughput

Optimisation T Introduction

A Thesefour dimensions affect each othes,g

I Increasing utilisation makes it harder to build at
nigh frequency

I Increasing frequency brings your bandwidth
utilisation closer to their limit since you consume

data at a faster rate
I Higher Utilisation means more data is required to
feed the computeunit

Optimisation T Introduction

A Most important toalways remembeis:

In a DFEgomputationis
done In space, not In
timel

Optimisation i Example
A Consider the CPtbde

1 f(cond)

y= exp(x*a);
else

y = exp(x*b);

Optimisation i Example

A Consider the CPU code

If(cond)
y = exp(x*a)

else
y= exp(x*b)

A HwImplementation 1 U @ ©
A . dzi X
© O

L4
f

Optimisation i Example

A Consider the CPU code

If(cond)
y = exp(x*a)

else
y= exp(x*b)

A HwImplementation 1 U @ ©
S (o

Exponentials are \ /

expensive!

Optimisation i Example

A Consider the CPU code

If(cond)
y = exp(x*a)

else
y = exp(x*b)

A Hw Implementation?2 U @ ©

A . dzii X

L4
O
f

Optimisation i Example

A Consider the CPU code

If(cond)

y = exp(x*a)
else

y = exp(x*b)

A HwImplementation2 U | /@

A . dzii X

There still are two O
multiplications when

only one result will be
used

Optimisation i Example

A Consider the CPU code

If(cond)

y = exp(x*a)
else

y = exp(x*b)

A HwImplementation 3

) 4

990
L4

A Now the implementation is optimal o

O
f

Dataflow Computing
Case Study

MAXEKER

Technologies
MMMMMMMMMMMMMMMMMMMMMMMMMMM

Porting N-Body to DFEs

AVery large N (~90,000 particles)
ABrute force approach
ALook at options, findptimal architecture

Problem to port to DFE

A Small code base
for (int t=0;t<T ;) {
memsefa, 0, N * sizeof (coord3d_t));
for (int g=0;q<N;g++){
for (int j=0;]<N;j++) {

float rx =pfj]. px - p[a- pXx;
float ry =pf]. py - pla. py;
float rz =p[j]. pz - plq- pz;
float dd = rx*rx + ry*ry + rz*rz +EPS;
floatd = 1/ sqrtf (dd * dd * dd);
float s = m[j] * d;

algl.x+= rx *s;
alqly+= 1y *s;
alql.z+= rz *s;
}
}
for (int i =0; i <N; i++){
p[i]. px +=p[i] v.X;
pli]. py +=p[i] vy;
pli]. p.z +=p[i] v.z;
pli]. vx +=a[i]x
pli]. vy +=a[ily;
pli]. vz +=a[i].z
}

}

A Very long running time: ~85 seconds pierestep,

DFE Porting Process

Architecture

Implementation

DFE Porting Process Overview

A Step 1: Analyse Code
I Profile code, measure time taken
I Measure memory requirements and working set size
I Understand numerical requirements
A Step 2: Architect Solution
I Evaluate and model partitioning options
I Estimate speedup
A Step 3: Implementation
I Transform code into partitioned architecture
" Implement C models

I Compile DFE (.max file)
I Optimise and Achieve Speedup

Analysis: Step 117 Dynamic Analysis

Aim: Have a complete map of all computation and
dataflow, and timings for each block of
computation.

A Find out where the computation is happening
(Oprofilecan help) and where the data is going

A Identify major loops / draw loop graph
A Measure time spent inside major loops

Analysis: Step 11T Dynamic Analysis

Loop over time step

Loop over N particles

Loop over N particles
Compute forces and accelerations

Loop over N particles
Update velocities and positions

3
Technologies

Analysis: Step 11T Dynamic Analysis

Loop over time step

Loop over N particles

Loop over N particles
Compute forces and accelerations

Loop over N particles
Update velocities and positions

3
Technologies

Analysis: Step 21 Static Analysis

Aim: Understand amount of data being moved around and
amount of compute to perform on it

A Analyse the data flow between the critical loops.
I Examine what data structures are being created.
I ldentify which loops are going to work with very large arra
A Analyse computation inside the critical loops.
I Count the number of floating point operations per data poir
I Analyse loop dependencies
A Understand the mathematical algorithms being used.
I Relationship between input and runtime, memory use.
I Understand precision requirements of each part of the

Analysis: Step 2 1 Static Analysis

Loop over time step

Loop over N particles

Loop over N particles
Compute forces and accelerations

Loop over N particles
Update velocities and positions

3
Technologies

Analysis: Step 2 1 Static Analysis

Loop over time step

Loop over N particles

Loop over N particles
Compute forces and accelerations
Use array of size OfN

Loop over N particles
Update velocities and positions
Use array of size O[N

3
Technologies

Analysis: Step 2 1 Static Analysis

Loop over time step

Loop over N particles

Loop over N particles
Compute forces and accelerations
Use array of size OfN

Loop over N particles
Update velocities and positions
Use array of size O[N

3
Technologies

Analysis: Step 31 Data Access plan

Aim: Consider various architecture choices and
understand the pros and cons of each choice

A Examine volume of data flowing through algorithm.

I How large is the working set, i.e. does it need to be stored
LMEMor FMEM?

I |s data access pattern known statically
or calculated dynamically?

I How much computation would be done
with each loaded data val(re

I Consider the ratio of Computation to Communication!

Analysis: Step 31 Architecture Options

A Examine volume of data flowing through algorithm.

I How large is the working set,
l.e. does it need to be stored IklMEMor FMEM?

On a MAX3 card, you have around 4.5MB of available ultr;
fast acces$>10TB/s) of storagea FMEM* If you need

more than that, then you will have to usdMEMwhich
offers12GB, 24GB, 48GB or 96GRBtofage peDFE.

* Some of this FMEM will be used blaxCompilelfor automatic buffering
(for example for scheduling, or in FIFOs between Kernels). How much,

Analysis: Step 31 DFE Architecture Options

Loop over time step

Loop over N particles

Loop over N particles
Compute forces and accelerations
Use array of size O[N

~20 FP Operations

Loop over N particles
Update velocities and positions
Use array of size O[N

~6 FP Operations

3
Technologies

Analysis: Step 31 DFE Architecture Options

A Examine volume of data flowing through algorithm.

| Isdata access pattern known statically?

If the pattern is static then you can either use one of the
command generators provided (LINEARLD, ...) or generate
commands on the CPU and stream them in.

| Is data access pattern computed dynamically?

If the address of the data you need to read or write needs
to be computed on the Dataflow Engine, then your access
pattern is dynamic and you will have to generate the
LMEMcommand inside a Kernel.

Analysis: Step 31 DFE Architecture Options

A For NBody problem, access pattern is static
and linear 1D

for(int q=0;q<N;qg++){
for (int j=0;j<N;j++){

}
}

Analysis: Step 31 DFE Architecture Options

A For NBody problem, access pattern is static
and linear 1D

for (intq=0; g <N; g++) {
for (intj=0; < N; j++) {

}
}

Analysis: Step 31 Architecture Options

A For NBody problem, access pattern is static
and linear 1D

for (intq=0; g <N; g++) {
for (intj=0; < N; j++) {

}
}

Analysis: Step 31 Architecture Options

A For NBody problem, access pattern is static
and linear 1D

for (intq=0; g <N; g++) {
for (intj=0; < N; j++) {

}
}

Analysis: Step 31 Architecture Options

A For NBody problem, access pattern is static
and linear 1D

for (intq=0; g <N; g++) {
for (intj=0; < N; j++) {

}
}

Analysis: Step 31 Architecture Options

A For NBody problem, access pattern is static
and linear 1D

for (intq=0; g <N; g++) {
for (intj=0; < N; j++) {

}
}

Analysis: Step 31 Architecture Options

A Examine volume of data flowing through algorithm.

I How much computation would be done
with each loaded data value?

By carefully choosing your memory access pattern, you cal
Increase data reuse and decrease memory bandwidth
requirement.LMEMhas a limit which depends dhe platform
and itsfrequency.For some DFE 860MHz

thisis about 33.5 GB/s.

With complex access patterns and many streams, actual

Analysis: Step 31 Architecture Options

A What needs to be on the DFE,

andwhat can stay on the CPU?

I How many functions require access to the largest arrays?

I Do the functions that use the large arrays also have long runtime?
Movingthe bulk of the compute to the DFE might notthe right answer.

CPU time 1001s Option 1 time 11s Option 2 time 6s
- D ¢ 4 N
Functioni1c 1000s ! Functionlg 5s) Functionlg 5s
4 R v
\ 4 Function2¢ 1s
\ Function2¢ 1s / Function2¢ 1s \ /
S 7 vFinal result only

Analysis: Step 31 Architecture Options

A Examine what data can be poemputed.

I Which functions actually need to be run inside the loops?

Considethe followingloops:
for 1 =0.99 do
double a = cos (i *2*P1/100)
forj=0 ..9999
// do some compute

Assumehat we wishto put theseloopsonto a DFEandthat
eachiteration of | takesone cycle Puttingthe computation
of a onto the DFEas well meansthat we will be using
hardwareresourcedo computea cosinethat is neededonly
once every 10,000 cycles Thisis very wasteful Instead, it
would be better to compute the 100 different valuesof a

Analysis: Step 317 Multiple Kernels

NOTE: There is a high overhead(*) to create a new kernel (each runni
their own clock domain), so keep the number of kernels low.

A Your design can have one or more kernels. How do you decide hov
many kernels to build:

1. Your design may have multiple passes. Each pass could have a se|
kernel.

2. You may be able to partition your design into pieces with dynamic
and/or different input and output bandwidth requirements

Analysis: Step 31 Architecture Options
A NBodyOption 1

Write masses, initial DFE -
positions and velocities
only once Read
positions
Kernel 1 " masses

LMEM

Compute forces and
accelerations

Send positions and
accelerations Read
velocities

Position,
mass,

Send velocities

updated

positions Kernel 2

Update positions and Write new
velocities positions &
velocities

Analysis: Step 31 Architecture Options

A NBodyOption 2
Write masses and positions. DFE -

Do this each time step

LMEM

Kernel 1
CPU

Senci Compute forces and ~ PEEEE Position,
acce accelerations positions e
erations and

masses

Analysis: Step 31 Architecture Options
A NBodyOption 3

DFE
(= ™
N

Write
masse positions?

<Only once>

Send updated positionfs Send positions and accelerations

Write|velocities. [A

Only once.

Sencﬁ updated _)

ositions

Analysis: Step 31 Architecture Options
A NBodyOption 4

DFE
Write masses
and positions -
each time step
Send Ompute Torce
accelerations| anc

2I1C U

Conclusions T Porting CPU Software to DFEs

A Look at Options
A Process: Analysis, Architecture, Implementation
A Carefully minimise the number of kernels needed.

A First move data from CPU to DFE and then consider
which computations need to move with the data

