
Code Carpentry Workshop

Introduction to Introduction to

Dataflow Computing Dataflow Computing

Peter Sanders, July 2015

Dataflow ProgrammingDataflow Programming

BasicsBasics

Dataflow Graph Generation: Simple

33

What dataflow graph is generated?

DFEVar x = io.input(“x”, type);

DFEVar y;

y = x + 1;

io.output(“y”, y, type);

x

+

1

y

Dataflow Graph Generation: Simple

44

What dataflow graph is generated?

DFEVar x = io.input(“x”, type);

DFEVar y;

y = x + x + x;

io.output(“y”, y, type);

x

+

y

+

• Compute both values and use a multiplexer.

– x = control.mux(select, option0, option1, …, optionN)

– x = select ? option1 : option0

55

Conditional Choice in Kernels

DFEVar x = io.input(“x”, type);

DFEVar y;

y = (x > 10) ? x + 1 : x – 1

io.output(“y”, y, type);

Ternary-if operator is
overloaded

x

+

1

y

-

1

>

10

• Stream inputs/outputs process arrays
– Read and write a new value each cycle

– Off-chip data transfer required: O(N)

• Counters can compute intermediate streams on-chip
– New value every cycle

– Off-chip data transfer required: None

• Compile time constants can be combined with streams
– Static value through the whole computation

– Off-chip data transfer required: None

• What about something that changes occasionally?
– Don’t want to have to recompile Scalar input

– Off-chip data transfer required: O(1)

66

Scalar Inputs

• Consider:

• In fn2, we can change the value of C without recompiling,
but it is constant for the whole loop

• MaxCompiler equivalent:

77

Scalar Inputs

fn1(int N, int *q, int *p) {

 for (int i = 0; i < N; i++)

 q[i] = p[i] + 4;

}

fn2(int N, int *q, int *p, int C) {

 for (int i = 0; i < N; i++)

 q[i] = p[i] + C;

}

VS.

d

+

q

DFEVar p = io.input(“p”, dfeInt(32));

DFEVar C = io.scalarInput(“C”, dfeInt(32));

DFEVar q = p + C;

io.output(“q”, q, dfeInt(32));

A scalar input can be changed
once per stream, loaded into the
chip before computation starts.

C

Written
by host

• An FPGA has a few MB of very fast block RAM

• Can be used to explicitly store data on chip:
– Lookup tables

– Temporary Buffers

• Mapped ROMs/RAMs can also be accessed by host

88

On-chip memories / tables

d

q

DFEVar p = io.input(“p”, dfeInt(10));

DFEVar q = mem.romMapped(“table”, p,

 dfeInt(32), 1024);

io.output(“q”, q, dfeInt(32));

Mapped
ROM table

Written
by host

for (i = 0; i < N; i++) {

 q[i] = table[p[i]];

}

• Stream offsets allow us to compute on values in a
stream other than the current value.

• Offsets are relative to the current position in a stream;
not the start of the stream

• Stream data will be buffered on-chip in order to be
available when needed uses BRAM

– Maximum supported offset size depends on the amount of
on-chip BRAM available. Typically 10s of thousands of points.

99

Stream Offsets

Moving Average in MaxCompiler

1010

Kernel Execution

1111

Kernel Execution

1212

Kernel Execution

1313

Kernel Execution

1414

Kernel Execution

1515

Kernel Execution

1616

Boundary Cases

1717

What about the
boundary cases?

• To handle the boundary cases, we must explicitly
code special cases at each boundary

1818

More Complex Moving Average

otherwise

1 if

0 if

3/)(

2/)(

2/)(

11

1

1

Ni

i

xxx

xx

xx

y

iii

ii

ii

i

1919

Kernel Handling Boundary Cases

The Stream Loop

2020

DFEVar A = io.input(”input” , dfeUInt(32));

DFEVar B = A + 1;

io.output(”output” , B , dfeUInt(32));

A A

 +

1

B B

uint A[...];

uint B[...];

for (int count=0; ; count += 1)

 B[count] = A[count] + 1;

Adding a Loop Counter

2121

DFEVar A = io.input(”input” , dfeUInt(32));

DFEVar count = control.count.simpleCounter(32);

DFEVar B = A + count;

io.output(”output” , B , dfeUInt(32));

A A

 +

count count

B B

for (int count=0; ; count += 1)

 B[count] = A[count] + count;

int count = 0;

for (int i=0; i<N; ++i) {

 for (int j=0; j<M; ++j) {

 B[count] = A[count]+(i*M)+j;

 count += 1;

 }

}

Loop Nest without Dependence

2222

DFEVar A = io.input(”input” , dfeUInt(32));

CounterChain chain = control.count.makeCounterChain();

DFEVar i = chain.addCounter(N, 1).cast(dfeUInt(32));

DFEVar j = chain.addCounter(M, 1).cast(dfeUInt(32));

DFEVar B = A + i*100 + j;

io.output(”output” , B , dfeUInt(32));

A A

 +

B B

j 100 100 i

 +

 *

Use a chain
of counters

to generate i
and j

for (i = 0; ; i += 1) {

 float d = input[i];

 float v = 2.91 – 2.0*d;

 for (iter=0; iter < 4; iter += 1)

 v = v * (2.0 - d * v);

 output[i] = v;

}

Loop Unrolling with Dependence

2323

DFEVar d = io.input(”d”, dfeFloat(8, 24));
DFEVar TWO = constant.var(dfeFloat(8,24), 2.0);
DFEVar v = constant.var(dfeFloat(8,24), 2.91) − TWO*d;

for (int iteration = 0; iteration < 4; iteration += 1) {
 v = v*(TWO− d*v);
}
io.output(”output” , v, dfeFloat(8, 24));

for (i = 0; ; i += 1) {

 float d = input[count];

 float v = 2.91 – 2.0*d;

 for (iter=0; iter < 4; iter += 1)

 v = v * (2.0 - d * v);

 output[i] = v;

}

Loop Unrolling with Dependence

2424

DFEVar d = io.input(”d”, dfeFloat(8, 24));
DFEVar TWO= constant.var(dfeFloat(8,24), 2.0);
DFEVar v = constant.var(dfeFloat(8,24), 2.91) − TWO*d;

for (int iteration = 0; iteration < 4; iteration += 1) {
 v = v*TWO− d*v;
}
io.output(”output” , v, dfeFloat(8, 24));

• The software loop has a cyclic dependence (v)
• But the unrolled datapath is acyclic

Exercise: Chapter 4 Exercise 1

2525

DFEVar x = io.input(“x”, type);

DFEVar y;

y = x * x + x;

io.output(“y”, y, type);

• Build Simulation
• Look at kernel Graph before & after
• Run

DFEVar x = io.input(“x”, type);

DFEVar y;

DFEVar square = x * x;

square.simWatch(“square”);

y = square + x;

y.simWatch(“y”);

io.output(“y”, y, type);

• Modify source to add simWatch()
• Run
• Check watchpoint table

Dataflow ProgrammingDataflow Programming

Numeric TypesNumeric Types

• DFEVars have a size in bits

– CPU restricted to char, int, long, float, double (etc)

– DFE is much more flexible
• 7 bit integer

• Float 16 bit mantissa, 8 bit exponent

• Choose type to represent number in DFEVar

– With appropriate accuracy.

– With appropriate dynamic range.

• More bits == More FPGA area used

2727

Number Representation

• MaxCompiler has in-built support for floating point
and fixed point/integer arithmetic

– Depends on the type of the DFEVar

• Can type inputs, outputs and constants

• Or can cast DFEVars from one type to another

• Types are Java objects, just like DFEVars,

2828

Number Representation for DFEs

// Create an input of type t

DFEVar io.input(String name, DFEType t);

// Create an DFEVar of type t with constant value

DFEVar constant.var(DFEType t, double value);

// Cast DFEVar y to type t

DFEVar x = y.cast(DFEType t);

• Floating point numbers with base 2, flexible
exponent and mantissa

• Compatible with IEEE floating point
except does not support denormal numbers

– When Computing in Space you can use a larger exponent

• Examples:

2929

DFE Floating Point - dfeFloat

DFEType t = dfeFloat(int exponent_bits, int mantissa_bits);

Exponent bits Mantissa bits

IEEE single precision 8 24

IEEE double precision 11 53

DFE optimized low precision 7 17

Including the sign bit

Why dfeFloat(7,17)…?

• Fixed point numbers

• Flexible integer and fraction bits

• Flexible sign mode

– SignMode.UNSIGNED or SignMode.TWOSCOMPLEMENT

• Common cases have useful aliases

3030

DFE Fixed Point – dfeFixOffset

DFEType t = dfeFixOffset(int num_bits, int offset, SignMode sm);

Integer bits Fraction bits Sign mode

dfeInt(N) N 0 TWOSCOMPLEMENT

dfeUInt(N) N 0 UNSIGNED

dfeBool() 1 0 UNSIGNED

• Can mix different types in a MaxCompiler kernel to
use the most appropriate type for each operation

– Type conversions costs area – must cast manually

• Types can be parameter to a kernel program

– Can generate the same kernel with different types

3131

Mixed Types

class MyKernel extends Kernel {

 public MyKernel(KernelParameters k, DFEType t_in, DFEType t_out)

{

 super(k);

 DFEVar p = io.input(“p”, dfeFloat(8,24));

 DFEVar q = io.input(“q”, t_in);

 DFEVar r = p * p;

 DFEVar s = r + q.cast(r.getType());

 io.output(“s”, s.cast(t_out), t_out);

 }

}

• When we remove bits from the RHS of a number we may
want to perform rounding.
– Casting / type conversion
– Inside arithmetic operations

• Different possibilities
– TRUNCATE: throw away unwanted bits
– TONEAR: if >=0.5, round up (add 1)
– TONEAREVEN: if >0.5 round up, if <0.5 round down, if =0.5 then

round to the nearest even number

• Lots of less common alternatives:
– Towards zero, towards positive infinity, towards negative infinity,

random….

• Very important in iterative calculations – may affect
convergence behaviour

3232

Rounding

• Floating point arithmetic uses TONEAREVEN

• Fixed point rounding is flexible,
controlled by the RoundingMode

– TRUNCATE, TONEAR and TONEAREVEN are in-built

3333

Rounding in MaxCompiler

DFEVar z;

...

optimization.pushRoundingMode(RoundingMode.TRUNCATE);

z = z.cast(smaller_type);

optimization.popRoundingMode();

DataflowDataflow ComputingComputing

OptimisationOptimisation

• Goals of optimisations:

– Fit more compute on DFE

– Increase frequency of kernels

–Reduce expensive data movements (e.g.
back and forth between CPU and DRAM)

Optimisation – Introduction

3535

• The four dimensions of Optimisation:

– Bandwidth
How much data can you afford to move between DFE/CPU/DRAM?

– Area
Resource usage as reported in your _build.log. This tells you which percentage of the chip will
be doing compute every tick.

– Utilisation
Actual compute. This is not reported by the tools and can vary during run time. This tells you
which proportion of compute is useful compute (e.g. muxes will ‘throw away’ data).

– Frequency
Higher frequency means higher throughput.

Optimisation – Introduction

3636

• These four dimensions affect each other, e.g:

– Increasing utilisation makes it harder to build at
high frequency

– Increasing frequency brings your bandwidth
utilisation closer to their limit since you consume
data at a faster rate

– Higher Utilisation means more data is required to
feed the compute unit

Optimisation – Introduction

3737

• Most important to always remember is:

In a DFE, computation is
done in space, not in

time!

Optimisation – Introduction

3838

• Consider the CPU code

if (cond)

 y = exp(x*a);

else

 y = exp(x*b);

Optimisation – Example

3939

• Consider the CPU code
If(cond)

 y = exp(x*a)

else

 y = exp(x*b)

• Hw Implementation 1

• But…

Optimisation – Example

x

b a

* *

exp exp

cond

mux

y

4040

• Consider the CPU code
If(cond)

 y = exp(x*a)

else

 y = exp(x*b)

• Hw Implementation 1

• But…

Optimisation – Example

x

b a

* *

exp exp

cond

mux

y

Exponentials are
expensive!

4141

• Consider the CPU code
If(cond)

 y = exp(x*a)

else

 y = exp(x*b)

• Hw Implementation 2

• But…

Optimisation – Example

x

b a

* *

exp

cond

mux

y

4242

• Consider the CPU code
If(cond)

 y = exp(x*a)

else

 y = exp(x*b)

• Hw Implementation 2

• But…

Optimisation – Example

x

b a

* *

exp

cond

mux

y

There still are two
multiplications when
only one result will be
used

4343

• Consider the CPU code
If(cond)

 y = exp(x*a)

else

 y = exp(x*b)

• Hw Implementation 3

• Now the implementation is optimal

Optimisation – Example

x

b a

*

exp

cond

mux

y

4444

DataflowDataflow ComputingComputing

Case StudyCase Study

• Very large N (~90,000 particles)

• Brute force approach

• Look at options, find optimal architecture

Porting N-Body to DFEs

• Small code base
 for (int t = 0; t < T; t++) {
 memset(a, 0, N * sizeof(coord3d_t));
 for (int q = 0; q < N; q++) {
 for (int j = 0; j < N; j++) {
 float rx = p[j].p.x - p[q].p.x;
 float ry = p[j].p.y - p[q].p.y;
 float rz = p[j].p.z - p[q].p.z;
 float dd = rx*rx + ry*ry + rz*rz + EPS;
 float d = 1/ sqrtf(dd * dd * dd);
 float s = m[j] * d;
 a[q].x += rx * s;
 a[q].y += ry * s;
 a[q].z += rz * s;
 }
 }
 for (int i = 0; i < N; i++) {
 p[i].p.x += p[i].v.x;
 p[i].p.y += p[i].v.y;
 p[i].p.z += p[i].v.z;
 p[i].v.x += a[i].x;
 p[i].v.y += a[i].y;
 p[i].v.z += a[i].z;
 }
 }

• Very long running time: ~85 seconds per timestep,
for 90,000 particles.

Problem to port to DFE

DFE Porting Process

Analysis
Architecture

Implementation

• Step 1: Analyse Code

– Profile code, measure time taken

– Measure memory requirements and working set size

– Understand numerical requirements

• Step 2: Architect Solution

– Evaluate and model partitioning options

– Estimate speedup

• Step 3: Implementation

– Transform code into partitioned architecture

– Implement C models

– Compile DFE (.max file)

– Optimise and Achieve Speedup

DFE Porting Process Overview

Aim: Have a complete map of all computation and
dataflow, and timings for each block of
computation.

• Find out where the computation is happening
(Oprofile can help) and where the data is going

• Identify major loops / draw loop graph

• Measure time spent inside major loops

Analysis: Step 1 – Dynamic Analysis

Analysis: Step 1 – Dynamic Analysis

Loop over time step

Loop over N particles

Loop over N particles
Update velocities and positions

Loop over N particles
Compute forces and accelerations

Analysis: Step 1 – Dynamic Analysis

Loop over time step

Loop over N particles

Loop over N particles
Update velocities and positions

Loop over N particles
Compute forces and accelerations O(N2)

O(N)

Aim: Understand amount of data being moved around and
amount of compute to perform on it

• Analyse the data flow between the critical loops.
– Examine what data structures are being created.

– Identify which loops are going to work with very large arrays.

• Analyse computation inside the critical loops.
– Count the number of floating point operations per data point

– Analyse loop dependencies

• Understand the mathematical algorithms being used.
– Relationship between input and runtime, memory use.

– Understand precision requirements of each part of the
algorithm

Analysis: Step 2 – Static Analysis

Analysis: Step 2 – Static Analysis

Loop over time step

Loop over N particles

Loop over N particles
Update velocities and positions
Uses array of size O(N)

Loop over N particles
Compute forces and accelerations
Uses array of size O(N)

O(N2)

O(N)

Analysis: Step 2 – Static Analysis

Loop over time step

Loop over N particles

Loop over N particles
Update velocities and positions
Use array of size O(N)

Loop over N particles
Compute forces and accelerations
Use array of size O(N)

O(N2)

O(N)

Update
Forces

Update
Position & velocities

Analysis: Step 2 – Static Analysis

Loop over time step

Loop over N particles

Loop over N particles
Update velocities and positions
Use array of size O(N)
~6 FP Operations

Loop over N particles
Compute forces and accelerations
Use array of size O(N)
~20 FP Operations

O(N2)

O(N)

Aim: Consider various architecture choices and
understand the pros and cons of each choice

• Examine volume of data flowing through algorithm.

– How large is the working set, i.e. does it need to be stored in
LMEM or FMEM?

– Is data access pattern known statically
or calculated dynamically?

– How much computation would be done
with each loaded data value?

– Consider the ratio of Computation to Communication!

Analysis: Step 3 – Data Access plan

• Examine volume of data flowing through algorithm.

– How large is the working set,
i.e. does it need to be stored in LMEM or FMEM?

On a MAX3 card, you have around 4.5MB of available ultra
fast access (>10TB/s) of storage in FMEM*. If you need
more than that, then you will have to use LMEM which
offers 12GB, 24GB, 48GB or 96GB of storage per DFE.

Analysis: Step 3 – Architecture Options

* Some of this FMEM will be used by MaxCompiler for automatic buffering
 (for example for scheduling, or in FIFOs between Kernels). How much,
 varies widely from one design to another.

Analysis: Step 3 – DFE Architecture Options

Loop over time step

Loop over N particles

Update 3 floats/particle -> up to 1MB

Loop over N particles
Update velocities and positions
Use array of size O(N)
Read 3 floats/particle -> up to 1MB
Update 6 floats/particle -> up to 2.1MB
~6 FP Operations

Loop over N particles
Compute forces and accelerations
Use array of size O(N)
Read 4 floats/particle -> up to 1.4MB
~20 FP Operations

O(N2)

O(N)

• Examine volume of data flowing through algorithm.

– Is data access pattern known statically?
If the pattern is static then you can either use one of the
command generators provided (LINEAR1D, ...) or generate
commands on the CPU and stream them in.

– Is data access pattern computed dynamically?
If the address of the data you need to read or write needs
to be computed on the Dataflow Engine, then your access
pattern is dynamic and you will have to generate the
LMEM command inside a Kernel.

Analysis: Step 3 – DFE Architecture Options

• For N-Body problem, access pattern is static
and linear 1D

for (int q = 0; q < N; q++) {

 for (int j = 0; j < N; j++) {

 ...

 }

}

Analysis: Step 3 – DFE Architecture Options

q=0
j=0

Analysis: Step 3 – DFE Architecture Options

q=0

j=1

• For N-Body problem, access pattern is static
and linear 1D

for (int q = 0; q < N; q++) {

 for (int j = 0; j < N; j++) {

 ...

 }

}

Analysis: Step 3 – Architecture Options

q=0

j=2

• For N-Body problem, access pattern is static
and linear 1D

for (int q = 0; q < N; q++) {

 for (int j = 0; j < N; j++) {

 ...

 }

}

Analysis: Step 3 – Architecture Options

q=0

j=N-1

• For N-Body problem, access pattern is static
and linear 1D

for (int q = 0; q < N; q++) {

 for (int j = 0; j < N; j++) {

 ...

 }

}

Analysis: Step 3 – Architecture Options

j=0

q=1

• For N-Body problem, access pattern is static
and linear 1D

for (int q = 0; q < N; q++) {

 for (int j = 0; j < N; j++) {

 ...

 }

}

Analysis: Step 3 – Architecture Options

q=1
j=1

• For N-Body problem, access pattern is static
and linear 1D

for (int q = 0; q < N; q++) {

 for (int j = 0; j < N; j++) {

 ...

 }

}

• Examine volume of data flowing through algorithm.

– How much computation would be done
with each loaded data value?

By carefully choosing your memory access pattern, you can
increase data reuse and decrease memory bandwidth
requirement. LMEM has a limit which depends on the platform
and its frequency. For some DFE at 350MHz
this is about 33.5 GB/s.

With complex access patterns and many streams, actual
bandwidth could be different.

Analysis: Step 3 – Architecture Options

• What needs to be on the DFE,
and what can stay on the CPU?
– How many functions require access to the largest arrays?

– Do the functions that use the large arrays also have long runtime?

 Moving the bulk of the compute to the DFE might not be the right answer.

Analysis: Step 3 – Architecture Options

CPU

DFE

Function1 – 5s

Function2 – 1s

CPU

Function1 – 1000s

Function2 – 1s

10G data
transferred Transfer 5s

CPU

DFE

Function1 – 5s

Function2 – 1s

Final result only

CPU time 1001s Option 1 time 11s Option 2 time 6s

• Examine what data can be pre-computed.
– Which functions actually need to be run inside the loops?

 Consider the following loops:
for i = 0..99 do

 double a = cos(i*2*PI/100)

 for j = 0..9999

 // do some compute

Assume that we wish to put these loops onto a DFE and that
each iteration of j takes one cycle. Putting the computation
of a onto the DFE as well means that we will be using
hardware resources to compute a cosine that is needed only
once every 10,000 cycles. This is very wasteful. Instead, it
would be better to compute the 100 different values of a
and store them into an FMEM on the DFE.

Analysis: Step 3 – Architecture Options

NOTE: There is a high overhead(*) to create a new kernel (each running in
their own clock domain), so keep the number of kernels low.

• Your design can have one or more kernels. How do you decide how
many kernels to build:

1. Your design may have multiple passes. Each pass could have a separate
kernel.

2. You may be able to partition your design into pieces with dynamic
and/or different input and output bandwidth requirements

(*) A Maxeler architecture is a Globally Asynchronous Locally Synchronous (GALS)
architecture

Analysis: Step 3 – Multiple Kernels

• NBody Option 1

 DFE

Send positions and
accelerations

Analysis: Step 3 – Architecture Options

LMEM

Position,
mass,

velocities

Kernel 1

Compute forces and
accelerations

Kernel 2

Update positions and
velocities

CPU

Write masses, initial
positions and velocities
only once

Send
updated
positions

Read
positions
, masses

Read
velocities

Write new
positions &
velocities

• NBody Option 2

 DFE

Send
accel-
erations

Analysis: Step 3 – Architecture Options

LMEM

Position,
mass

Kernel 1

Compute forces and
accelerations

CPU

Write masses and positions.
Do this each time step

Read
positions
and
masses

• NBody Option 3

DFE

Analysis: Step 3 – Architecture Options

Kernel 1

Compute forces
and

accelerations CPU

 Write
masses & positions.
 <Only once>

FMEM

Position,
mass

Send positions and accelerations

Kernel 2
Update positions

and
velocities Send updated

positions

FMEM
Velocity

Write velocities.
 Only once.

Send updated positions

• NBody Option 4

DFE

Send
accelerations

Analysis: Step 3 – Architecture Options

Kernel 1

Compute forces
and

accelerations

CPU

Write masses
and positions
each time step

FMEM

Position,
mass

• Look at Options

• Process: Analysis, Architecture, Implementation

• Carefully minimise the number of kernels needed.

• First move data from CPU to DFE and then consider
which computations need to move with the data

Conclusions – Porting CPU Software to DFEs

